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Effect of collisions on wave motions in a plasma with 
anisotropic pressure 
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MS. received 29th January 1968 

Abstract. The development with time of small-amplitude oscillations, having 
harmonic spatial dependence, in a magnetoactive plasma is examined with the aid of 
moment equations. The plasma, which is assumed to be homogeneous and un- 
bounded, has an initial anisotropic distribution of pressure. Neglecting the motion 
of the ions, we consider in detail the effect of collisions on the further development of 
the system for the propagation vector along or perpendicular to the magnetic field. 
For the collisionless case we obtain the dispersion relations derived by Jaggi. For 
the case of weak collisions explicit expressions for the damping and phase shift 
coefficients are evaluated. I t  is found that, for longitudinal propagation along the 
magnetic field, the collisional damping decreases or increases according to whether the 
perpendicular pressure is greater or less than the longitudinal pressure. High-frequency 
transverse waves may exhibit a collision-induced instability if the pressure anisotropy 
is large and of the correct sign. For extremely-high-pressure relaxation frequencies we 
recover the ordinary dispersion relations, in which only the momentum relaxation 
frequency contributes to the damping of the wave. 

1. Introduction 
The subject of waves and instabilities in a plasma is of extreme interest because of its 

extensive applications to laboratory devices, astrophysical systems and thermonuclear 
fusion. The  literature on the propagation of waves in a plasma is very extensive. However, 
sufficient attention has not been paid to the problem of wave motions in a plasma with 
anisotropic pressure. A magnetoactive plasma can support anisotropic pressure when the 
collision or collision-like relaxation frequencies are sufficiently small. The  collisions, 
besides restoring the isotropy of pressure, may lead to new instabilities which may be of 
great significance for thermonuclear devices where a high-density hot plasma is confined 
by the mechanism of adiabatic magnetic compression. These instabilities may also be of 
interest in the study of the magnetoactive regions of the astrophysical systems. 

Jaggi (1962) has considered wave motions in a plasma with anisotropic pressure, in 
which the effect of pressure anisotropy on the propagation characteristics of the waves was 
discussed. Collisions were completely neglected in this investigation. Experimental 
investigations of the effect of pressure anisotropy on instabilities have been made by Post 
and Perkins (1961). T h e  author (Sharma 1967) has examined the effect of collisions on 
the propagation of waves in a plasma with a fixed anisotropic pressure. It was assumed 
here that the collisions forced the perturbed pressure tensor to relax to the equilibrium 
value. 

I n  the present investigation we consider an electron plasma system in which the 
collisions are initiated after it has developed a certain pressure anisotropy. The subsequent 
development of the system is examined with the aid of moment equations which include 
the momentum and pressure relaxation frequencies. For the collisionless case we obtain 
Jaggi's dispersion relations. If the relaxation frequencies are much smaller than the 
propagation frequency, the collisions slowly restore the pressure isotropy and may lead to 
new instabilities in the system. The  conditions for these instabilities are deduced. Explicit 
expressions are derived for the phase shift and damping coefficients. If the pressure 
relaxation frequency is extremely high, the pressure anisotropy is promptly destroyed by 
the collisions. I n  this situation we readily recover the usual dispersion relations; here 
damping results from the momentum relaxation collisions only. It is also found in general 
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that the momentum relaxation mechanism always produces damping; the pressure relaxa- 
tion mechanism, on the other hand, contributes to damping or instability, depending upon 
the situation and the value of the anisotropy parameter cc. 

Two cases have been considered in detail: that where the propagation vector is 
directed along the magnetic field, and that where the propagation vector is directed 
perpendicular to the magnetic field. 

2. Basic equations 
Starting with the Boltzmann transport equation with a simple collision term in which 

the collisions force the distribution function to relax to the equilibrium distribution func- 
tion, we obtain the following moment equations for the electron fluid: 

an a 
-+-(nuj) = 0 
at ax, 

I n  the above equations n, m and e are the number density, mass and magnitude of charge 
of the electron, respectively; U , ,  pi, and qijk are the components of the fluid velocity, 
pressure tensor and the heat flow tensor, respectively. p is *(trace of the pressure tensor). 
E+ and B, are the electric and magnetic fields, respectively. eiik is the Levi-Civita tensor 
density and 8 jk  is the Kronecker delta. v is the momentum relaxation frequency, and is 
roughly equal to the number of collisions per unit time which an electron makes with ions 
or neutrals; v’ may be called the pressure relaxation frequency, and is equal to the number 
of collisions per unit time which an electron makes with other electrons, ions and neutrals. 
Thus  v’ includes the electron-electron collisions, which are effective in restoring the 
isotropy of pressure. The  electromagnetic fields are governed by Maxwell’s equations : 

aB, 1 aEi 4renui 
ax, c at c 

E , ,  -- = --- - - 
t i k  

aBj 
ax, 
-- - 0  

where no is the equilibrium number density of ions or electrons. 
I n  order to obtain a closed set of equations, we neglect the higher-order moments in 

equation (2.3), viz. the divergence of the heat flow tensor. Equations (2.1)-(2.7) then form 
a closed set suitable for the investigation of the problem. 

3. Linearization and treatment of pressure tensor 
We consider an unbounded, homogeneous, quasi-neutral, stationary plasma embedded 

in a uniform magnetostatic field. It is assumed that the plasma has initially a certain 
pressure anisotropy and the collisions are started at zero time. The  subsequent behaviour 
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of the system is considered in the present analysis. We neglect ion motion. All the equations 
(2.1)-(2.7) are linearized about the initial static state in the usual manner. There is no 
unperturbed electric field in the initial state. 

It is convenient to separate the components of the pressure tensor into two parts: 
a slowly varying and spatially independent part Pjk, and rapidly oscillating part $ j k .  Hence 
we write 

Using (3 .1 ) ,  we obtain from equation (2.3) 
P i k  = $ i k  f 

Pll = Pzz = p ,  +p* exp( -v‘t) 
P33 = p ,  - 2p* exp( -v’t) 
Pi2 = P13 = P23 = 0 

where p ,  is the isotropic pressure which will be restored by the collisions after a very long 
time, andp* determines the initial pressure anisotropy of the system. In  deriving equations 
(3.2) and (3.3) we have used the fact that the scalar pressure is not affected by the collisions. 
The  linearized pressure tensor equation can be written as 

where b, is the perturbed magnetic field and ui is the perturbed fluid velocity; Bl is 
the static uniform magnetic field Bo which we take along the x axis. I t  will be noted 
that the separation of the pressure tensor into two components, as given by equation (3 .1 ) ,  
is possible since the time scales of variation of Pjk. are quite different from those 
of the terms of equation (3 .5) .  Taking the propagation vector in the xx plane, we 
assume that the variables have harmonic spatial dependence of the form exp(ik,x + ik3z), 
where K ,  and k,  are the components of the propagation vector along the x and z axes 
respectively. 

The perturbed magnetic and electric fields are governed by the following relations : 

Using the above equations, we obtain the following relations for the various components 
of the pressure tensor : 
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Taking the trace of the pressure tensor, we obtain 

where 

and the operators are defined as 

a 2  , a 
9’ = -+v -. 

a t 2  at 

(3.13) 

(3.14) 

(3 .15)  

(3.16) 

ai denotes the time derivative. Using the above relations in the linearized equation of 
motion, we obtain a set of three linear coupled differential equations, which in principle 
can be solved to obtain the three components of the perturbed velocity as functions of 
time. For a general direction of the wave vector the expressions become extremely 
complicated. The situation is very much simplified when the propagation vector is in the 
direction of the magnetic field or perpendicular to it. 

4. Propagation vector along the magnetic field 
When the propagation vector is directed along the magnetic field (k, = 0, k3 = k) 

the components of the perturbed velocity along and perpendicular to the magnetic field 
become decoupled. The  longitudinal component of the perturbed velocity is governed 
by the equation 

i i’3+(v+v’)ii3+Zi3[wp2+~~’+3k2~2{1 -2% exp( -v’t))] 

+u3v’[wp2+k2s2{Q+2&exp( -v’t))] = 0 (4.1) 
where a = p*/po  is the anisotropy parameter; s = (po/mno)1/2 is the isothermal velocity 
of sound. Equation (4.1) has been derived previously (Sharma, to be published). We shall 
briefly reproduce the important results. I n  the absence of collisions, we obtain the disper- 
sion relation for electron plasma waves with the effective value of y equal to 3 : 

= - 2 ~ ) .  ( 4 4  
I n  the presence of weak collisions (v’ < w )  equation (4.1) can be solved to give 

where w is given by equation (4.2). Equation (4.3) shows that in the absence of anisotropic 
pressure both v and vf contribute to the damping of the wave. However, the wave suffers 
an instability only if 

4 3vw2 
CI > -+-- 

5 5v‘k2s2‘ (4.4) 

However, this is not possible since a must lie between - 1 and +. The damping de- 
creases if Q > 0, i.e. when the perpendicular pressure is larger than the longitudinal 
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pressure. I n  the opposite extreme case of very-high-pressure relaxation frequency, equa- 
tion (4.1) reduces to an ordinary differential equation with constant coefficients, and we 
obtain a dispersion relation 

w2 = up2 + Qk2s2 + iwv (4.5) 
where u3 varies as exp(iwt). Equation (4.5) indicates that only v contributes to the damping 
of the wave, and the effective value of y now becomes equal to 3. 

The components of the perturbed velocity perpendicular to the magnetic field are 
governed by the equation 

Bb 9 1 3 ( z i + v u )  + k2s2 9b(zi+~’~-222j~’) + up2 Q13zi-3J22s2wp2~’zi 
Ti!2[ 9 1 3  9 b U  f 3tc’k2S2Wp2U - k2s2 9 b ( U (  1 - ztc’))] = 0 (4.6) 

where U = u1 & iu2 and a’ = a exp( -v’t). The upper and lower signs refer to the clock- 
wise and anticlockwise modes of circular rotation. I n  the absence of collisions equation (4.6) 
yields the dispersion relation 

3ak2s2wp2 - k2s2(1 - 2 ~ )  up2 1 -  - 
0’ - Q2 w2 - k2C2 (w2 - Q2) ( w 2  -K2c2) 

k2s2( 1 - 251) 3 y.wP2k2s2 
T l j l  + + -1 = 0. (4.7) 

w w2 - Q2 ( 0 2  - Q2) (w2 - P C 2 )  

Equation (4.7) is the same as the one obtained by Jaggi (1962). In  the case of a cold plasma 
equation (4.7) becomes 

In  the presence of weak collisions (U’ < U )  the pressure anisotropy is gradually reduced. 
In  order to investigate the effect of these collisions on the propagation of waves we consider 
the system for a time t ,  such that 

v ‘ t < l  and wt$l.  (4.9) 
The  first condition ensures that the effect of collisions will remain small, and the 

second condition makes it possible to consider several cycles of wave propagation. Under 
these conditions U has a solution of the type 

U = uo exp{i( w + a)t + bt2} (4.10) 

where a and b are small quantities and w is the characteristic frequency of propagation in 
the absence of collisions. It is seen that the imaginary part of a determines the coeEcient 
of damping or instability, depending upon its sign. - ibt, if real, gives the resulting phase 
shift caused by the collisions and pressure anisotropy. a and b can be determined by 
substituting equation (4.10) in equation (4.6). The expressions so obtained are still very 
complicated. Hence we shall restrict ourselves to the case when the phase velocity of the 
wave is much larger than the velocity of sound of the electron fluid, i.e. w 9 ks. Con- 
sidering the case when !2 -+ 0, we obtain 

v’s2( w2 - wp2) V W p 2  
za = { ~ ( 3 0 ~ ~ ~ + 8 ~ ~ ) - 2 ~ ~ ~ ) - - - - -  

4w42 2w2 
(4.11) 

and 
isrv’s2(w2 - wp2)wp2 

b =  - (4.12) 
4w3c2 

It is seen from equation (4.11) that v produces damping in the wave. The  pressure 
relaxation mechanism, for w > wp, reduces or increases damping depending upon whether 
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CI is positive or negative. The  system can undergo an instability if (for w % 0,) 

(4.13) 

This shows that a large pressure anisotropy is necessary for the instability to occur. The  
phase shift term vanishes in the absence of v' or E. 

In  the other limit when the cyclotron frequency i2 is much larger than the propagation 
frequency 0, we obtain 

3iav'wp2k2s2 
b =  'F: (4.14) 

2i2(wp2 i: 2 0 4  
and 

G W ' C ; ~ ~ ~ ~ S ~ ( ~ W ~  + 3wp2) vwQwP2- v'uk2s2wP2 
za = -__ -'F:- + - (4.15) QD 0 2  D 

where 
D = Q2(wp2 - 20-1') i: wQ(2Q2 + up2). 

If  w $ up, the above equations are simplified to yield 

and 

(4.16) 

(4.17) 

From equation (4.17) it is obvious that an instability is possible for a large positive value of 
CI which satisfies the inequality 

%>-(--+ u p 2  vc2 $1. 
4w2 v's2 

(4.18) 

A comparison of equations (4.13) and (4.18) shows that for the instability to occur 
a must be positive, i.e. the perpendicular thermal energy must be larger than the longi- 
tudinal thermal energy. 

If the pressure relaxation frequency v' is much higher than all the frequencies of 
interest, equation (4.6) can be very much simplified. As v' + CO, equation (4.6) gives the 
dispersion relation 

(4.19) 

Equation (4.19) is the usual expression for transverse waves propagating along the magnetic 
field. This expression is independent of the thermal effects. It is also seen that only the 
momentum relaxation frequency v contributes to the damping of the wave. 

5. Propagation vector perpendicular to the magnetic field 
If the propagation vector is taken along the x axis while the magnetic field is pointing 

in the ,z direction, the equations of motion break into two independent sets: one of these 
is a differential equation which describes the behaviour of u3, the component of the 
perturbed velocity along the magnetic field; the other set is composed of two simultaneous 
differential equations which govern the other two components, u1 and u2, of the perturbed 
velocity. The  first of these can be expressed as 

+ 3xwP22i, exp( -v' t)] + up2 a132i3 = 0.  
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I n  the absence of collisions equation (5.1) gives the dispersion relation 

which in the zero-temperature approximation reduces to 

w2 = wp2+k2C2, ( 5 . 3 )  
I n  the presence of weak collisions we consider the system for a time t ,  such that the 
inequality (4.9) is satisfied. We again assume that the time dependence of u3 is of the form 

us = ua0 exp{i( w + a)t + bt2} (5.4) 
where a < w and b 4 1. Substituting (5.4) in equation (5.1) and retaining only the 
first-order small quantities, we see that the characteristic frequency of propagation is 
given by equation (5.2), with 

ivfCtk2s2(k2c2 + 3wp2 - w2) 
b =  ( 5 . 5 )  4 w A  

where 

and 

- -a  = -+ 
A = 20’ - (K2c2 + Q2 + A’s2( 1 + -M) + up2} 

v(o2-k%2) (d- Q2) v’ak2s2(k2c2$3wp2- w2) v’-Mk2s2(3K2c2+9wp2+w2) - + 
A2 4Aw2 2 A w 2  

As the phase velocity of the wave is much higher than the electron thermal velocity, 
w B ks, the above equations may be simplified to yield 

and 

(5 .9 )  

(5.10) 

For the instability to occur U must be large and negative, and must satisfy the inequality 

- -M > 9 ($ + 1)  
2w2 

If, on the other hand, Q 9 w 9 w p ,  from equations (5.7) and (5.8) we have 

irv’ w p2s2 w b =  - 
2L-w 

and 

(5.11) 

(5.12) 

(5.13) 
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The condition for the instability now becomes 

(5.14) 9. 
If the pressure relaxation frequency is very high, we obtain from equation (S.l), as 
v‘ + CO, the dispersion relation 

(5.15) 

Equation (5.15) represents the usual expression for the transverse waves in a plasma 
(Spitzer 1956). 

Finally, we consider the case of coupled longitudinal-transverse waves which are 
described by a pair of coupled differential equations governing the behaviour of u1 and u2. 
These equations are 

9 1 2  -+v’ -+v 2il+k2s2[912{32il(1 +a’)++v’u1(l -&’)}] 
C t  i i : t  1 
+4k2s2M2{-cl(l +%’)+v’U~%’)+ w P 2 9 1 2 ( ~ 1 + v ’ u 1 )  

+2M{ - i i 2 (1  +K‘) +v‘&( - 1 +~r’))k’s’+ i 2 9 1 2 ( & + ~ ’ 2 i 2 )  = 0 (5.16) 
9 1 2  9b(& +vu2) + k2s2 gb{ZiZ( 1 + a’) + u2v’) 

+ u p 2  9 1 & 2  + 2ak2s2  ab{U1( 1 + %’)} - fi 9 1 2  g b U 1  = 0 (5.17) 
where 

E’ = CI exp( -v’t). 

Equations (5.16) and (5.17) yield the dispersion relation for the collisionless case as 

1- 
3k2s2( 1 + a )  wp2 4k2s2( 1 + r)RZ) -+ - -  U P 2  , k2s2(1 +E)) ( 

$ 2 2  il - 2k2s2( 1 + %)I2 

+ p c 2  - w 2  4a2 - W 2  w2 w2 w2(4M2 - w2) 

= -  (5.18) 

In  the opposite extreme case, when the pressure relaxation frequency v‘ -+ GO, the 

( 
w2 4!2 - w2 

dispersion relation as obtained from equations (5.16) and (5.17) becomes 

(QK2s2 - w2 + iwv+ up2) {(k2c2 - u2) ( w  - iv) + w w p 2 }  

+ UR2(k2C2 - w2) = 0. (5.19) 

Equation (5.19) is the usual expression for the coupled longitudinal-transverse waves with 
the effective value of y = f .  

6. Conclusions 
The  above analysis indicates that, in the presence of weak collisions, a plasma which has 

an anisotropic pressure may exhibit new collisional instabilities. The  anisotropic pressure 
represents an anisotropic distribution of thermal energy, and the pressure relaxation 
mechanism pumps this energy from one direction into the other. This feeding of energy 
may give rise to the instability. It is seen that the momentum relaxation mechanism always 
induces damping; the pressure relaxation mechanism may increase or decrease the damping, 
depending upon the situation and the sign of the anisotropy parameter. The  damping and 
phase-shift coefficients are explicitly calculated for certain cases and conditions are deduced 
for increasing oscillations to occur. For the transverse mode of propagation a high value of 
the anisotropy parameter is necessary for the instability to occur. The  oscillations 
cease to increase as soon as the value of c1 falls below the required value. I n  the limit of 
infinite-pressure relaxation frequency the usual dispersion relations are again obtained 
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and now the momentum relaxation mechanism alone contributes to the process of 
the damping of the wave. 
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